Tetracyanophthalocyaninatoeisen(II) mit Isocyaniden als axiale Liganden

Michael Hanack * und Ronald Grosshans

Institut für Organische Chemie, Lehrstuhl für Organische Chemie II, Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, West-Germany

Eingegangen am 6. März 1989

Key Word: Phthalocyaninatoiron(II) complexes

Tetracyanophthalocyaninatoeisen(II) (CN)₄PcFe (2) wird aus 1,2,4-Tricyanobenzol (1) durch Umsetzung mit Eisenpentacarbonyl erhalten. Aliphatische und aromatische Isocyanide RNC ($\mathbf{R} = t\mathbf{B}u$, cHx, verschieden substituiertes Ph) reagieren mit 2 zu den entsprechenden bisaxial substituierten Tetracyanophthalocyaninatoeisen(II)-Verbindungen (CN)₄PcFe(CNR)₂ (3a-8a). Durch Umsetzung von 2 mit 1,4-Diisocyanobenzol (dib), einem zweizähnigen Brückenliganden, wird der überbrückte Komplex [(CN)₄PcFe(dib)]_n (9a) erhalten. Die spektroskopischen und thermischen Eigenschaften der Komplexe werden beschrieben und mit denen der analogen PcFe(CNR)₂- und TPyPFe(CNR)₂-Verbindungen 3b-8b bzw. 3c-8c sowie mit [PcFe(dib)]_n (9b) verglichen.

Makrocyclische Übergangsmetallkomplexe lassen sich stapelförmig anordnen, wenn die zentralen Metallatome der Makrocyclen durch lineare koordinationsfähige Brückenliganden verknüpft sind. Solche Koordinationspolymere werden von uns als Modellsysteme für eindimensionale Leiter untersucht^{1,2}.

Als Makrocyclen (Mac) wurden bevorzugt das Phthalocyanin (Pc), substituierte Phthalocyanine, Tetrabenzoporphyrin (TBP) aber auch 1,2- und 2,3-Naphthalocyanin (1,2und 2,3-Nc) verwendet. Als zentrale Metallatome eignen sich z.B. Eisen, Cobalt oder Ruthenium. Bei Übergangsmetallen in der Oxidationsstufe +II kann z.B. Pyrazin (pyz), s-Tetrazin (tz) oder 1,4-Diisocyanobenzol (dib), bei Metallen in der Oxidationsstufe +III kann Cyanid (CN⁻) oder Thiocyanat (SCN⁻) als Brückenligand dienen.

Die elektrischen Eigenschaften der genannten Koordinationspolymere -L-MacM-L-MacM-L- werden von den drei Bauelementen Makrocyclus (Mac), zentrales Metallatom (M) und Brückenligand (L) bestimmt¹⁾. Dem Oxidationspotential des Makrocyclus kommt dabei für die elektrischen Eigenschaften eine wichtige Bedeutung zu. So sind Metallmakrocyclen mit einem vergleichsweise niedrigen Oxidationspotential leichter chemisch oder elektrochemisch dotierbar, wobei qualitativ die Reihe 2,3-NcM < TBPM < PcM, (M = Fe, Co) gilt³⁾.

Für eine weitere Variation der Eigenschaften der überbrückten makrocyclischen Metallkomplexe wurde als Metallmakrocyclus jetzt das Tetracyanophthalocyaninatoeisen(II) (CN)₄PcFe (2) ausgewählt. Durch den stark elektronenziehenden Substituenten wird sowohl das Oxidationspotential des Makrocyclus als auch das des zentralen Metallatoms erhöht.

Wir berichten im folgenden über das Koordinationsverhalten von $(CN)_4PcFe$ (2) mit Isocyaniden und vergleichen die Eigenschaften der gewonnenen Komplexe $(CN)_4PcFe$ -

Tetracyanophthalocyaninatoiron(II) with Isocyanides as Axial Ligands

Tetracyanophthalocyaninatorion(II) (CN)₄PcFe (2) is obtained by treating 1,2,4-tricyanobenzene (1) with pentacarbonyliron. Aliphatic and aromatic isocyanides RNC ($\mathbf{R} = tBu, cHx$, differently substituted Ph) react with 2 to form the corresponding bisaxially substituted tetracyanophthalocyaninatoiron(II) compounds (CN)₄-PcFe(CNR)₂ (3a-8a). Reaction of 2 with 1,4-diisocyanobenzene (dib), a bidentate bridging ligand, yields the bridged complex [(CN)₄PcFe(dib)]_n (9a). The spectroscopic and thermal properties of the complexes are described and compared with the analogous compounds PcFe(CNR)₂ (3b-8b), TPyPFe(CNR)₂ (3c to 8c), and with [PcFe(dib)]_n (9b).

 $(CNR)_2$ (**3a** - **8a**) und der überbrückten Verbindung [(CN)₄-PcFe(dib)]_n (**9a**) mit den schon früher von uns dargestellten analogen Verbindungen PcFe(CNR)₂^{4a)} (**3b** bis **8b**), TPy-P(CNR)₂^{4b)} (**3c** - **8c**) (Schema 2) und [PcFe(dib)]_n (**9b**)⁵⁾.

Synthese und Charakterisierung von (CN)₄PcFe (2)

Das zur Synthese von $(CN)_4PcFe$ (2) benötigte 1,2,4-Tricyanobenzol (1) wurde durch Umsetzung von 4-Aminophthalsäuredinitril zum entsprechenden Diazonium-Salz und sich anschließender Sandmeyer-Reaktion erstmals in befriedigender Ausbeute hergestellt (Schema 1). Die Darstellung von 1 nach einer Patentvorschrift konnte nicht reproduziert werden⁶⁾.

 $(CN)_4PcFe$ (2) erhält man nach der für Eisenphthalocyanine bewährten Methode durch Umsetzung von 1,2,4-Tricyanobenzol (1) mit Eisenpentacarbonyl⁷⁾ (Schema 1). $(CN)_4PcFe$ (2) fällt als blaues, mikrokristallines Pulver an.

Bei der Synthese von 2 können vier Konstitutionsisomere entstehen. Eine Trennung oder Zuordnung der Isomere erfolgte nicht, es wurde stets das Isomerengemisch eingesetzt.

Mößbauer- und cyclovoltammetrische Messungen zeigen, daß in 2 das Eisen in der Oxidationsstufe + II (Isomerieverschiebung relativ zu Fe: $\delta = 0.35$ mm/s; Quadrupolaufspaltung: $\Delta E_Q = 0.67$ mm/s) vorliegt. Für den Übergang von Fe(II) nach Fe(III) in 2 wird ein Oxidationspotential von 0.965 V (gemessen in Pyridin mit TBA+ClO₄⁻ als Leitsalz) gefunden. Schon bei PcFe⁸ mit einem Oxidationspotential von 0.690 V erfolgt durch Luftsauerstoff der Oxidationsschritt nur sehr langsam, so daß in 2 keine Oxidation des Zentralmetalls durch Einwirken von Luftsauerstoff mehr eintritt. Das FT-IR-Spektrum von 2 ist sehr bandenreich, eine eindeutige Zuordnung der Banden ist nicht möglich. Anzahl und Lage der Banden unterscheiden sich vom Spek1666

trum des PcFe. Charakteristisch für $(CN)_4$ PcFe (2) ist die Absorptionsbande der Cyano-Gruppen bei 2229 cm⁻¹.

Schema 1

Der Einfluß der peripheren Substitution auf das Pc-System wird beim Vergleich der UV/VIS-Daten von $(CN)_4PcFe$ (2) mit Me₈PcFe⁹, (MeO)₈PcFe⁹, Cl₁₆PcFe⁹ und PcFe deutlich. Wegen der Schwerlöslichkeit dieser Phthalocyanine⁹⁾ konnten die Spektren nur in Pyridin aufgenommen werden. Die UV/VIS-Spektren der dabei entstandenen Bispyridin-Addukte $R_m PcFe(py)_2^{9}$ zeigen mit elektronenschiebenden, peripheren Substituenten im Vergleich zu PcFe(py)₂ keine großen Veränderungen (Tab. 1). Im perchlorierten Derivat ist dagegen die Q-Bande (679 nm) und die Soret-(B-)Bande (357 nm) um 24 nm langwellig gegenüber den Werten von PcFe(py)₂ verschoben. Die Cyano-substituierte Verbindung 2a zeigt eine geringere Rotverschiebung der O-Bande (664 nm) um 9 nm und eine kurzwellige Verschiebung der Soret-Bande (320 nm) um 13 nm gegenüber $PcFe(py)_2$. Identische Ergebnisse wurden auch bei R_mPc -Co(py)₂ beobachtet^{9b)}.

Die Thermogravimetrie zeigt für 2 eine hohe Temperaturstabilität. Die Abspaltung der Cyano-Gruppen erfolgt bei Temperaturen über 435°C und ist stark verzögert. Den

Tab. 1. UV/VIS-Daten von R_mPcFe(py)₂-Verbindungen in Pyridin

Verbindung		λη	_{nax} [nm]		
$PcFe(py)_2^{a}$	655	595		415	333
$Me_8PcFe(py)_2^{a}$	662	635 sh	600	418	337
$(MeO)_8PcFe(py)_2^{a}$	657	632 sh	596	406	342
$(CN)_4PcFe(py)_2$ 2a	664	634	609	416	320
$Cl_{16}PcFe(py)_2^{a}$	679	650 sh	618	437	357

^{a)} Daten aus Lit.⁹⁾.

größten Massenverlust findet man bei 543°C, hervorgerufen durch die beginnende Zersetzung der Verbindung.

Darstellung und Charakterisierung monomerer Isocyanid-Komplexe (CN)₄PcFe(CNR)₂

 $(CN)_4PcFe$ (2) läßt sich im Einklang mit den an PcFe und TPyPFe gefundenen Ergebnissen⁴⁾ mit Isocyaniden bisaxial koordinieren. Die Synthese der Isocyanid-Komplexe erfolgt durch Umsetzung von 2 in der Schmelze des überschüssigen Liganden. Zur Reinigung wird über Kieselgel mit Chloroform als Laufmittel chromatographiert. Die erhaltenen Verbindungen (CN)₄PcFe(CNR)₂ (3a – 8a) (Schema 2) sind luftstabile Pulver, die in Chloroform, Methylenchlorid und Aceton gut löslich sind. Ihre Charakterisierung erfolgte durch NMR-, IR-, UV- und TG-Daten.

Schema 2

¹H-NMR-Spektroskopie

Infolge des ausgeprägten Ringstroms des heteroaromatischen 18- π -Elektronensystems in den Komplexen 3a-8a erfahren sowohl die Signale der Ringprotonen des Phthalocyanin-Ringes, als auch die der Protonen der axialständigen Liganden charakteristische Verschiebungen.

In Übereinstimmung mit Berechnungen auf der Basis des Ringstrommodells¹⁰⁾ erscheinen die Pc-Protonen bei tiefem Feld mit Zentren um ca. 9.6, 9.4 und 8.2 ppm. Die Resonanzen der Protonen der axialständigen Liganden sind dagegen generell hochfeldverschoben. Das Ausmaß der Hochfeldverschiebung in Abhängigkeit von der Entfernung des betrachteten Protons zum Zentrum des Ringsystems läßt sich qualitativ bzw. semiquantitativ über Modellrechnungen bestimmen¹¹⁾.

Tab. 2. ¹ H-NMR-Daten von (CN) ₄ PcFe(CNR) ₂ (3a-8a), T	$PyPFe(CNR)_2^{4b}$ (3)	c-8c) und PcFe(CNR) ₂ ^{4a)}	(3b-8b) in CDCl ₃ ; &	(ppm)
gegen CI	$DCl_3 (\delta = 7.24)$			

R	Ver- bindung	Ligand R a-H	b-H	c-H	d(d')-H	e(b'c')-H	Tetracyanophthalocyanin, Tetrapyridoporphyrazin bzw. Phthalocyanin ^{a)}
сн.	RNC ^{b)} 3a 3c	1.44t[9H] -0.47s[18H] -0.52s[18H]					8,25m[4H] 9.37m[4H] 9.57[4H] 7,89m[4H] 9,33m[4H] 9,62[4H]
—¢-сн _з	3b	-0.51s[18H]					7.96[8H] 9.31[8H]
ĊН ₃	RNC ^{b)}	3.57[1H]	1.1-1.9br[1	0H]			
_في الم	4a	1.41m[2H]	-0.05m[4H]		0.36m[16H]		8.25[4H] 9.37m[4H] 9.58[4H]
CH S	d, d'4b	1.47m[2H] 1.45m[2H]	-0.03m[4H] -0.35m[4H]	0.16m[4H]	0.32m[16H] 0.37m[4H]	0. 47[8 H]	7.80[4H] 9.33m[4H] 9.63m[4H] 7.95[8H] 9.38[8H]
<u>}</u>	RNC ^{b)}		7.1br[3H]			2.40s[6H]	
~~ <u>`_</u> ``	5a 50		6.15d[4H]	6.42m[2H]		0.19s[12H] 0.15c[12H]	8.25m[4H] 9.39m[4H] 9.60[4H] 7.90m[4H] 9.34m[4H] 9.65m[4H]
сн,	5b		6.07d[4H]	6.35t[2H]		0.18s[12H]	7.97[8H] 9.33[8H]
с <mark>н</mark> ,	RNC ^{b)}		7.30m[4H]	·		2.44s[3H]	
⊣∽.	6a	5.30m[2H]		- 6.35m[6H] -		0.09s[6H]	8.26[4H] 9.41m[4H] 9.63[4H]
	6b	5.22m[2H]		- 6.39m[6H] -		0.06s[6H]	7.99[8H] 9.34[8H]
a b	RNC ^{b)}	7.18m[4H]			2.34s[3H]	
~~ >	-CH, 7a	5.05[4H]	6.25[4H]			1.80[6H]	8.02m[4H] 9.33m[4H] 9.55[4H]
<u> </u>	70 710	5.06[4H] 5.03[4H]	6.22[4H] 6.19[4H]			1.78[6H] 1.76[6H]	7.92m[4H] 9.35m[4H] 9.04m[4H] 7.99[8H] 9.34[8H]
ert HC(CH ₃)₂		0.00[411]	0.10[41]				
٦	RNC ^{D)}		7.22m[4H]			3.47s[1H]	
─ 《 》°	8a 8c	5.26m[2H] 5.19m[2H]		- 6.40m[6H]		-U.12m -0.11m(14H)	8.29M[4H] 9.41M[4H] 9.63[4H] 7.91m[4H] 9.34m[4H] 9.66m[4H]
<u> </u>	8b	5.20m[2H]		- 6.38m[6H] -		-0.11m[14H]	7.95[8H] 9.34[8H]

^{a)} AA'XX'-Spektrum. – ^{b)} Daten der freien Liganden RNC. – ^{c)} f-H: 1.26 d [6H].

Im Gegensatz zum typischen AA'XX'-System des Phthalocyanins¹²⁾ ergeben die Protonen der Konstitutionsisomere des $(CN)_4$ PcFe-Systems bei niedrigen Feldstärken (80 MHz) ein ABX-Spin-System und ein AMX-Spin-System bei höheren Feldstärken (250-400 MHz). Die Integration

Abb. 1. 'H-NMR-Spektrum von (CN)₄PcFe(cHxNC)₂ (4a), Ausschnitt der Pc-Ringprotonen

der einzelnen Signalgruppen bestätigt die angegebene Zuordnung.

In allen $(CN)_4$ PcFe $(CNR)_2$ -Verbindungen **3a**-**8a** lassen sich für die Ringprotonen folgende Bereiche chemischer Verschiebung angeben: X-Teil: 9.55-9.60 ppm, A-Teil: 9.33 bis 9.39 ppm, B-(M-)Teil: 8.02-8.29 ppm.

Das aus der Integration abgeleitete Verhältnis (CN)₄Pc-Fe:CNR = 1:2 beweist die Hexakoordination des Zentralmetalls entsprechend der Formulierung (CN)₄PcFe-(CNR)₂. Die chemischen Verschiebungen der Isocyanid-Liganden sind weitgehend unabhängig davon, ob diese an (CN)₄PcFe, TPyPFe^{4b)} oder PcFe^{4a)} koordiniert sind (Tab. 2). Sie zeigen damit keine signifikante Abhängigkeit von den elektronischen Eigenschaften der koordinativen Bindung. Die bereits für PcFe(CNR)₂^{4a)} und TPyPFe-(CNR)₂^{4b)} beschriebene partielle Spin-Entkopplung¹³⁾ durch Komplexierung, die zur Aufhebung der long-range-14N-1H-Kopplung der Isocyanide¹⁴⁾ führt, stimmt mit dem Verhalten der (CN)₄PcFe(CNR)₂-Derivate überein. Eine Aussage über das σ -Donor/ π -Akzeptor-Verhaften der verschiedenen axialen Liganden in den (CN)₄PcFe(CNR)₂-Verbindungen 3a-8a anhand der Lage der Multipletts der Pc-Protonen ist nicht möglich, da die beobachteten Differenzen beim Übergang von **3a**-**8a**, **3b**-**8b** nach **3c**-**8c** zu gering sind.

Zur Aufnahme der NMR-Spektren wurden jeweils gesättigte Lösungen der Verbindungen in CDCl₃ hergestellt. Die erhaltenen Spektren belegen die Reinheit und den Diamag-

Tab. 3. ¹³C-NMR-Daten der Komplexe **3a,b** und **4a,b** sowie der freien Liganden in CDCl₃; δ (ppm) gegen CDCl₃ (δ = 77.0)

Verbindung					Ligand					Phthalo	cyanin ^{a)}			
			C-a	C-b	C-c	C-d	C-f	C-1	C-2	C-3/7	C-4/8	C-5	C-6	C-9
tBuNC ^{b)}	h		54.1	30.2	-	-	153.2	-	-	-	-	-	-	-
(CN) ₄ PcFe(tBuNC) ₂	f ČH3	3a	55.8	28.6	-	-	146.6	131.4	121.8	140.6	143.2	111.5	125.4	119.7
PcFe(tBuNC)2 ^{C)}	CN-C-CH	3 3b	55.0	28.7	-	-	143.0	127.5	120.8	141.1	146.9	-	-	-
cHxNC ^{b)}	f b		51.5	32.8	22.8	25.1	156.0	-	-	-	-	-	-	-
(CN)4PcFe(cHxNC)2	CN V	a 4a	51.9	30.0	19.9	23.5	146.6	131.4	121.8	190.6	143.6	111.4	125.4	119.7
PcFe(cHxNC)2 ^{C)}		≻ _{4b}	51.4	30.2	20.0	23.6	. 144.4	127.5	120.6	141.2	146.9	-	-	-

^{a)} Zuordnung in Schema 1. – ^{b)} Daten der freien Liganden. – ^{c)} Daten für 3b und 4b aus Lit.⁴⁾.

netismus der vermessenen (CN)₄PcFe-Addukte. Werden die Lösungen einige Zeit nach der Darstellung erneut vermessen, so sind die Signale des freien Liganden erkennbar, die auf eine teilweise Dissoziation der Verbindungen 3a-8ahinweisen.

¹³C-NMR-Spektroskopie

Zur weiteren Charakterisierung der Bis(isocyanid)-Addukte 3a-8a, insbesondere aber zur Untersuchung des Einflusses der Metallkoordination auf die Verschiebung der ¹³C-Resonanzen des axialen Liganden, wurden die ¹³C-NMR-Spektren der Verbindung (CN)₄PcFe(*t*BuNC)₂ (**3a**) und (CN)₄PcFe(*c*HxNC)₂ (**4a**) herangezogen. Die Zuordnung der Resonanzen der Pc-Kohlenstoffatome C-1 bis C-8 (Schema 1) in den (CN)₄PcFe-Derivaten kann analog der für verschiedene PcFeL₂-Addukte anhand von off-resonance-Experimenten und zusätzlich unter Zuhilfenahme von Vergleichsdaten des strukturell ähnlichen Dihydrodibenzotetraaza[14]annulens durchgeführten Interpretation erfolgen¹⁵.

Der Einfluß der peripheren Cyano-Gruppen auf die chemische Verschiebung der Pc-C-Atome wird durch Inkrementabschätzung und durch Vergleich mit geeigneten Verbindungen z.B. Isoindol und 4-Cyanoisoindol abgeschätzt. Die Zuordnung der C-Atome der axialen Liganden erfolgt durch Vergleich mit Literaturdaten¹⁶.

Die Signale von C-1 bis C-8 verschieben sich in Abhängigkeit vom axialen Liganden um maximal 0.4 ppm (Tab. 3). Im Vergleich von $(CN)_4PcFe$ (2) mit den entsprechenden PcFe-Komplexen erscheinen die Signale von C-1 um 3.9 ppm, die von C-2 um 1.0-1.2 ppm tieffeldverschoben, während die Signale von C-3 und C-4 um 0.5-0.6 bzw. 3.3-3.7 ppm zu höherem Feld verschoben sind.

Das Signal des Isocyanid-C-Atoms zeigt in allen Komplexen, verursacht durch Kopplung und Quadrupolrelaxation, eine deutliche Linienverbreiterung. Es erfährt durch die Koordination des Liganden an das zentrale Metallatom eine starke Hochfeldverschiebung¹⁷⁾, die bei den (CN)₄PcFe-(CNR)₂-Verbindungen jeweils ca. 10 ppm beträgt (Tab. 3).

Im Gegensatz zum Protonenresonanzspektrum wird die chemische Verschiebung eines ¹³C-Kernes weniger vom Ringstrom des Phthalocyanin-Systems als vielmehr durch einen paramagnetischen Anteil¹⁸⁾ beeinflußt. Die durch Metallkoordination bedingte Verschiebungsdifferenz der übrigen Kohlenstoffatome C-a bis C-d des axialen Liganden (Tab. 3) beträgt daher gegenüber den freien Liganden in allen $PcFe(CNR)_2$ -Komplexen maximal nur noch 2-3 ppm.

IR-Spektroskopie

Die IR-Spektren der Verbindungen 3a-8a zeigen die intensive NC-Valenzschwingung um 2150 cm⁻¹. Diese Bande erfährt beim Übergang vom freien zum koordinierten Liganden eine Verschiebung, deren Richtung von den σ -Donor- bzw. π -Akzeptoranteilen der Metall–Ligand-Bindung abhängig ist^{13,19}. Mit zunehmendem π -Rückbindungsanteil vom Metall zum Isocyanid wird eine Verschiebung der NC-Valenzschwingung zu niedrigeren Wellenzahlen beobachtet.

Tab. 4. \tilde{v}_{NC} -Werte [cm⁻¹] von Isocyanid-Komplexen, aufgenommen als KBr-Preßling^{a,b)}

Verbindung		gebun- dener Ligand	freier Ligand	Verschiebung (ṽ _{CN,geb.} – ṽ _{CN,frei})
(CN)₄PcFe(tBuNC)₂	3a	2159	2138	21
TPyPFe(tBuNC)₂	3c	2157		19
PcFe(tBuNC)₂	3b	2154		16
(CN)₄PcFe(cHxNC)₂	4a	2172	2144	28
TPyPFe(cHxNC)₂	4c	2171		27
PcFe(cHxNC)₂	4b	2164		20
(CN) ₄ PcFe(Me ₂ PhNC) ₂	5a	2148	2122	26
TPyPFe(Me ₂ PhNC) ₂	5c	2140		18
PcFe(Me ₂ PhNC) ₂	5b	2133		11
(CN) ₄ PcFe(o-MePhNC) ₂	6a	2140	2122	18
TPyPFe(o-MePhNC) ₂	6c	2136		14
PcFe(o-MePhNC) ₂	6b	2130		8
(CN) ₄ PcFe(<i>p</i> -MePhNC) ₂	7a	2139	2125	14
TPyPFe(<i>p</i> -MePhNC) ₂	7c	2144		19
PcFe(<i>p</i> -MePhNC) ₂	7b	2145		20
(CN) ₄ PcFe(iPrPhNC) ₂	8a	2142	2120	22
TPyPFe(iPrPhNC) ₂	8c	2128		8
PcFe(iPrPhNC) ₂	8b	2131		11

^{a)} Vergleichsmakrocyclen wurden als Verreibung in Nujol aufgenommen. $-^{b)}$ Daten für **3b,c**-**8b,c** aus Lit.⁴⁾.

Aromatische Reste ermöglichen eine Mesomeriestabilisierung. Die bei Rückbindung vom Metall auf die Isocyanid-Gruppe übertragene Ladung wird weiter in die Aryl- π^* -Orbitale delokalisiert. Substituenten am Aryl-Ring modifizieren diesen Effekt stark (Tab. 4).

Die Stärke der π -Akzeptorbindung wird außerdem von der Oxidationsstufe des Metalls sowie dem verwendeten Makrocyclus bestimmt. Im Vergleich der Makrocyclen steigt die π -Akzeptorfähigkeit in der Reihe Pc²⁻ < TPyP²⁻ < (CN)₄Pc²⁻. Dies drückt sich in einer verringerten Rückbindung in den Isocyanid-Liganden aus. Die v_{NC}-Werte werden zu höheren Wellenzahlen verschoben, wobei der Effekt des organischen Restes der Isocyanide kompensiert wird (Tab. 4).

UV/VIS-Spektren

Im UV-Bereich zeigen $(CN)_4PcFe$ - wie die TPyPFe- und PcFe-Derivate die intensiven π - π^* -Übergänge innerhalb des heteroaromatischen 18- π -Elektronensystems, die charakteristischen Q- und B-Banden²⁰, bei ca. 670 und 330 nm. Beim Übergang von TPyPFe zum PcFe und $(CN)_4PcFe$ beobachtet man eine bathochrome Verschiebung der Q-Bande (Tab. 5). Während sich die B-Bande beim Übergang von PcFe zum TPyPFe bathochrom verschiebt, wobei die Lage der B-Bande vom organischen Rest R des axialen Liganden abhängig ist, kann diese bathochrome Verschiebung beim $(CN)_4PcFeL_2$ -System nur noch bei Komplexen mit aromatischen Isocyanid-Liganden festgestellt werden.

Tab. 5. UV/VIS-Daten der Komplexe 3-8, aufgenommen in CHCl₃^{a)}

Komplex			λ _{max} [nr	n]	
(CN) ₄ PcFe(tBuNC) ₂	3a	665	604	348	324
TPyPFe(tBuNC) ₂	3c	627	593		339
PcFe(tBuNC) ₂	3b	658	598	387 sh	326
(CN)4PcFe(cHxNC)2	4a	668	605	348	325
TPyPFe(cHxNC)2	4c	628	574 sh	398 sh	339
PcFe(cHxNC)2	4b	658	598	386 sh	325
(CN) ₄ PcFe(Me ₂ PhNC) ₂	5a	670	607	401 sh	332
TPyPFe(Me ₂ PhNC) ₂	5c	632	577 sh	393 sh	331
PcFe(Me ₂ PhNC) ₂	5b	658	598	393 sh	325
(CN) ₄ PcFe(o-MePhNC) ₂	6a	671	606	395 sh	328
TPyPFe(o-MePhNC) ₂	6c	634	579 sh	393 sh	331
PcFe(o-MePhNC) ₂	6b	663	601	388 sh	319
(CN) ₄ PcFe(<i>p</i> -MePhNC) ₂	7a	670	605	398 sh	335
TPyPFe(<i>p</i> -MePhNC) ₂	7c	633	579 sh	391 sh	332
PcFe(<i>p</i> -MePhNC) ₂	7b	633	599	392	324
(CN) ₄ PcFe(<i>i</i> PrPhNC) ₂	8 a	675	610	397 sh	333
TPyPFe(<i>i</i> -PrPhNC) ₂	8 c	634	579 sh	394 sh	332
PcFe(<i>i</i> PrPhNC) ₂	8 b	662	598	391	325

^{a)} Daten für **3b, c – 8b, c** aus Lit.⁴⁾.

Innerhalb der PcFe(CNR)₂-Reihe 3b-8b ist die Lage der Absorptionsbanden annähernd unabhängig vom Rest R^{4a}). Bei den TPyPFe(CNR)₂-Verbindungen 3c-8c beobachtet man eine bathochrome Verschiebung der *B*-Bande um ca. 6 nm beim Übergang von aromatischen auf aliphatische Isocyanide^{4b}). Die Lage der Q- und B-Bande bei den (CN)₄Pc-Fe-Komplexen 3a - 8a reagiert empfindlicher auf die Variation von R. Aromatische Reste bewirken eine bathochrome Verschiebung bis zu 10 nm für die Q- und B-Bande.

TG/DTG/DTA-Untersuchungen

TG/DTG/DTA-Untersuchungen geben Auskunft über die thermische Stabilität und Stöchiometrie der dargestellten Verbindungen 3a-8a. Alle DTA-Signale sind endotherm.

Die Ligandenabspaltung für (CN)₄PcFe-, TPyPFe-^{4b)} und PcFe-Derivate^{4a)} erfolgt annähernd im gleichen Temperaturbereich und in einer Stufe (Tab. 6). Nur bei (CN)₄PcFe-(*i*PrPhNC)₂ (**8a**), TPyPFe(*p*-MePhNC)₂ (**7c**) und TPyPFe-(Me₂PhNC)₂ (**5c**) ist eine Abspaltung des Liganden in zwei Stufen zu beobachten. Die Abspaltungstemperaturen liegen so niedrig, daß sich bei massenspektrometrischen Untersuchungen kein M⁺-Peak nachweisen läßt. Bei den analogen Ruthenium-Verbindungen, die bis zu 70 °C thermisch stabiler sind, kann ein Molekülionen-Signal festgestellt werden⁴⁾.

Tab. 6. Thermische Stabilität der (CN)₄PcFe(CNR)₂-, TPyPFe-(CNR)₂- und PcFe(CNR)₂-Verbindungen^a^j

Ligand	Ver- bindung	Thermogravimetris (CN) ₄ PcFe(CNR) ₂ 2	che Abspaltung der TPyPFe(CNR) ₂ c	Liganden [°C] ^{b)} PcFc(CNR) ₂ b
tBuNC	3	164 - 225	200 - 225	165-250
cHxNC	4	195 - 323	210-285	200 290
Me ₂ PhNC	5	236 - 328	200 - 295 ^{c)}	225-295
o-MePhNC	6	210-295	205-315	210-285
p-MePhNC	7	215-295	210-285 ^{c)}	200-290
iPrPhNC	8	207 – 292 ^{c)}	230-315	220 - 300

^{a)} Daten für **3b**, **c** - **8b**, **c** aus Lit.⁴⁾. - ^{b)} Simultane TG/DTA-Messung unter Stickstoff, Heizrate 2 K/min; Endtemperatur 400-500 °C. - ^{c)} Die Ligandenabspaltung erfolgt in zwei ineinander übergehenden Stufen; das Ende der Zersetzungsstufe kann nicht eindeutig erkannt werden.

Massenspektrometrie

Bei den $(CN)_4PcFe(CNR)_2$ -Verbindungen 3a-8a kann auch mit der schonenden Felddesorptionsmethode kein $[(CN)_4PcFe(CNR)_2]^+$ -Peak erhalten werden. Die koordinative M-L-Bindung wird gespalten, bevor der Komplex verdampft. Detektiert wird in allen Fällen nur der Makrocyclus bei m/z = 668 [(CN)_4PcFe⁺].

Darstellung von [(CN)₄PcFe(dib)]_n (9a)

Zur Darstellung der überbrückten Verbindung **9a** wurde die heterogene Umsetzung von $(CN)_4PcFe$ (2) mit einem geringen Überschuß des Liganden in Aceton gewählt. Die hohe Bildungstendenz von **9a** zeigt sich darin, daß ein monomerer Komplex der Zusammensetzung $(CN)_4PcFe(dib)_2$ bisher nicht erhalten werden konnte. (µ-1,4-Diisocyanobenzol)[tetracyanophthalocyaninato]eisen(II) (**9a**) fällt als mikrokristallines Pulver an und ist in den gängigen organischen Lösungsmitteln unlöslich.

Im IR-Spektrum von 9a erscheint bei 2122 cm⁻¹ die charakteristische Streckschwingung der Isocyanid-Gruppe 1670

(Tab. 7). Im Vergleich zum freien Liganden (\tilde{v}_{NC} = 2130 cm⁻¹) ist die Wellenzahl um 7 cm⁻¹ zu niedrigeren Werten verschoben. Dies deutet auf eine schwache π -Rückbindung vom Metall zum Isocyanid-Liganden hin. Bei vergleichbaren Komplexen ohne stark elektronenziehende Substituenten ist diese π -Rückbindung viel stärker ausgeprägt. So findet man bei $[PcFe(dib)]_n^{5,9}$ (9b) die NC-Schwingung bei 2100 cm⁻¹, bei $[1,2-NcFe(dib)]_n^{4c}$ sogar bei 2090 cm⁻¹. In Abhängigkeit vom Substituenten am Pc-Makrocyclus wird die Schwingungsfrequenz der NC-Bindung zu höherer Energie (elektronenziehende Gruppen) bzw. zu niedrigerer Energie (elektronenschiebende Gruppen) gegenüber [PcFe- $(dib)]_n$ (9b) verschoben (Tab. 7). Eine hohe Elektronendichte am Eisen begünstigt die π -Rückbindung zum Isocyanid-Liganden in die antibindenden Orbitale, die N = C-Bindung wird dadurch geschwächt und die Schwingungsfrequenz von vnc nimmt ab.

Tab. 7. \tilde{v}_{NC} -Werte [cm⁻¹] der [R_mPcFe(dib)]_r-Verbindungen, aufgenommen als Verreibung in Nujol

Ver- bin dung	[1,2-NcFe(dib)],	[Me ₈ PcFe(dib)] _n	[PcFe(dib)] _n
ν _{NC}	2090 ^{a)}	2094 ^{b)}	2100 ^{b)}
Ver- bin- dung	[Cl ₁₆ PcFe(dib)] _n [(CN)₄PcFe(dib)]"	freies dib
ν _{nc}	2122 ^{b)}	2122	2130

^{a)} Daten aus Lit. ^{4c)}. - ^{b)} Daten aus Lit. ^{5,9)}.

Infolge der thermischen Labilität des dib-Liganden ist die Aussagekraft der thermischen Analyse eingeschränkt, man findet stets einen etwas geringeren Massenverlust als erwartet^{4c)}. Der beobachtete Wert für **9a** liegt unter dem erwarteten für eine Verbindung (CN)₄PcFe: dib = 1:1, so daß die Bildung des monomeren (CN)₄PcFe(dib)₂ ausgeschlossen, und dies als Indiz für das Vorliegen einer polymeren Verbindung gewertet werden kann. Die Ligandenabspaltung erfolgt in einer Stufe im Bereich von 238-357°C und verläuft exotherm. Die Abspaltungstemperatur zeigt die vergleichsweise hohe Stabilität von **9a**.

Tab. 8. UV/VIS-Daten der $[R_m PcFe(dib)]_n$ -Komplexe als Festkörperreflexionsspektren. Die Spektren wurden von 1 proz. Verreibungen in BaSO₄ gegen BaSO₄ als Weißstandard aufgenommen

Verbindung		λ _{max} [1	n m]	
$[Me_8PcFe(dib)]_n^{a}$ [(CN)_4PcFe(dib)]_n 9a	687 701	635		340 378
$[(MeO_8)PcFe(dib)]_n^{a'}$ $[Cl_{16}PcFe(dib)]_n^{a)}$ $[PcFe(dib)]_n^{a)}$	735 sh 750 750 sh	675 702 680	393	342 358 330

a) Daten aus Lit. 5,9).

Das Elektronenanregungsspektrum von **9a** kann nur als Festkörperspektrum in Reflexion erhalten werden (Tab. 8). Die ungewöhnlich breiten Banden erschweren die Bestimmung der Bandenmaxima und verbieten eine Interpretation der Daten.

Von der Verbindung **9a** wurde ohne zusätzliche Dotierung die spezifische elektrische Gleichstromleitfähigkeit gemessen und mit den in Tab. 9 aufgeführten dib-überbrückten Komplexen und mit $(CN)_4PcFe$ (2) verglichen.

Tab. 9.	Elektrisch	e Pulver	leitfähigkei	it σ _{RT}	von	[(CN) ₄ PcF	Fe(dib)],
(9a) im	Vergleich	mit (CN	$I_4PcFe(2)$	und	den l	bekannten	dib-Po-
	-		lymeren				

Verbindung	$\sigma_{\text{RT}} \text{ [S/cm]}$	Lit.
(CN)₄PcFe	4×10^{-11}	
[(CN)₄PcFe(dib)],	5×10^{-12}	
[ClisPcFe(dib)],	3×10^{-11}	9)
[1.2-NcFe(dib)].	6×10^{-10}	4 c)
[PcFe(dib)].	2×10^{-6} a)	9)
[Me.PcFe(dib)].	2×10^{-5} a)	9)

^{a)} 4-Kontakt-Methode.

Die Messungen wurden an gepreßten Pulvern unter Druck in einer Zwei-Kontakt- oder Vier-Kontakt-Anordnung nach van der Pauw durchgeführt²¹⁾.

 $[(CN)_4PcFe(dib)]_n$ (9a) wurde nach dem von uns beschriebenen Verfahren mit Iod dotiert und analysiert²²). Tab. 10 zeigt die Raumtemperaturleitfähigkeiten von Ioddotiertem $[(CN)_4PcFe(dib)]_n$ mit verschiedenem Dotierungsgrad.

Tab. 10. Pulverleitfähigkeiten σ_{RT} von Iod-dotiertem [(CN)₄Pc-Fe(dib)]_n

Verbindung	σ _{RT} [S/cm]
[(CN)₄PcFe(dib)],	$5.0 \cdot 10^{-12}$
$[(CN)_4PcFe(dib)I_{1,7}]_n$	4.8 · 10 ⁻⁶
$[(CN)_4PcFe(dib)I_2]_n$	$2.1 \cdot 10^{-6}$

Die an anderen vergleichbaren überbrückten Systemen beobachtete Leitfähigkeitssteigerung in undotierter Form gegenüber dem entsprechenden Monomeren kann bei Verbindung 9a nicht beobachtet werden¹⁾. Ein perchlorierter Makrocyclus, sowie der 1,2-NcPc-Makrocyclus wirken sich ebenfalls ungünstig auf die Leitfähigkeit aus^{4c,9)}. Alle Verbindungen mit schlechter Leitfähigkeit zeichnen sich durch ihr hohes Oxidationspotential aus, so daß hier eine Dotierung durch Luftsauerstoff ausgeschlossen werden kann²³⁾.

Wie aus Tab. 10 hervorgeht, läßt sich $[(CN)_4PcFe(dib)]_n$ (9a) mit Iod oxidativ dotieren, wobei Verbindungen verschiedenen Dotierungsgrades erhalten werden können. Bei Maximaldotierung erreicht man mit $\sigma_{RT} = 2.1 \times 10^{-6}$ S/cm eine elektrische Leitfähigkeit, die im Halbleiterbereich, aber infolge des höheren Oxidationspotentials des CN-substituierten Makrocyclus deutlich unter den Leitfähigkeiten von [PcFe(dib)I₃]_n ($\sigma_{RT} = 1.6 \times 10^{-1}$ S/cm) oder [Me₈Pc- $Fe(dib)I_{2,7}]_n (\sigma_{RT} = 4 \times 10^{-2} \text{ S/cm}) \text{ liegt}^{22}.$

Experimenteller Teil

Alle Umsetzungen wurden unter Ausschluß von Feuchtigkeit und Sauerstoff durchgeführt. tBuNC, cHxNC und Me₂PhNC sind kommerziell erhältlich. Die Liganden o-MePhNC, p-MePhNC, iPr-PhNC und 1,4-Diisocyanobenzol wurden nach Literaturvorschrift hergestellt 24).

Für die spektroskopischen Messungen wurden folgende Geräte verwendet: NMR-Spektren: Bruker WH 90 (¹H, 90 MHz), Bruker AC 250 (1H, 250 Hz; 13C, 62.5 MHz), Bruker WM 400 (1H, 400 MHz; ¹³C, 100 MHz). - FT-IR-Spektren: Bruker IFS 48. - TG/ DTA/DTG: Netzsch Simultan-Thermoanalysegerät STA 429. -UV/VIS-Spektren: Shimadzu UV-365. - Massenspektren: Varian MAT 711 (70 eV). - Elementaranalysen: Carlo Erba Elemental Analyser 1104, 1106.

1.2.4-Tricvanobenzol (1): 4-Aminophthalsäuredinitril wurde nach Literaturvorschrift synthetisiert²⁵⁾. 41 g konz. Schwefelsäure tropft man langsam zu einer Mischung von 60 ml H₂O, 7.3 ml Eisessig und 21.0 g (0.15 mol) 4-Aminophthalsäuredinitril. Die Lösung erwärmt man bis sich das Amin vollständig löst und kühlt danach auf 0°C ab. Das Aniliniumsulfat wird mit 12.9 g (0.19 mol) Natriumnitrit in 20 ml Wasser bei 0°C diazotiert. Die Nitrit-Lösung gibt man innerhalb von 30 min tropfenweise hinzu und rührt weitere 30 min. Die Katalysatorlösung wird wie folgt hergestellt:

44.0 g (0.18 mol) CuSO₄ · 5 H₂O werden in 110 ml Wasser gelöst. Man gibt ca. 70 g Eis und unter starkem Rühren eine Lösung von 45.5 g (0.69 mol) KCN in 110 ml Wasser hinzu. Die Temp. darf 20°C nicht überschreiten, um die Dicyan-Bildung zu unterdrücken. Zu der bräunlichen Lösung gibt man 98.0 g (1.17 mol) Natriumhydrogencarbonat und 100 ml Toluol.

Die filtrierte Diazonium-Lösung wird innerhalb von 20 min zu dem 50°C warmen Katalysator gegeben. Anschließend wird die Toluol-Phase abgetrennt, das Reaktionsgemisch nochmals mit Toluol extrahiert, die vereinigten Toluol-Phasen mit 2 N NaOH und Wasser gewaschen und mit MgSO4 getrocknet. Man erhält ein fast reines Produkt, das bei 10⁻² Torr und 50°C sublimiert wird; Ausb. 14.4 g (64%), Schmp. 125°C. – IR (KBr): $\tilde{v} = 3112$, 3079, 3052 cm^{-1} (CH), 2249 (CN), 1598, 1484 (C=C). - ¹H-NMR (CDCl₃): $\delta = 8.32$ (dd, $J_{AB} = 1.63$ Hz, $J_{AX} = 0.11$ Hz, 1H, H_A), 8.39 (dd, $J_{AB} = 1.63$ Hz, $J_{BX} = 0.33$ Hz, 1 H, H_B), 8.6 (dd, $J_{AX} =$ 0.11 Hz, $J_{BX} = 0.33$ Hz, 1 H, H_X). $- {}^{13}$ C-NMR (CDCl₃): $\delta = 118.9$ (C-1), 116.5 (C-2), 136.4 (C-3), 117.0 (C-4), 136.2 (C-5), 132.3 (C-6), 114.8 (C-7), 113.3 (C-8), 113.8 (C-9). - MS (70 eV): m/z (%) = 153 (100) [M⁺].

> C₉H₃N₃ (153.14) Ber. C 70.59 H 1.97 N 27.44 Gef. C 71.06 H 1.99 N 27.44

Tetracyanophthalocyaninatoeisen(II) $[(CN)_4PcFe]$ (2): Unter N₂ werden 4.00 g (26.0 mmol) 1,2,4-Tricyanobenzol (1) in 30 ml 1-Chlornaphthalin langsam auf 250 °C erhitzt. Bei dieser Temp. tropft man innerhalb von 60 min eine Lösung von 1.22 g (6.2 mmol) Fe(CO)₅ in 15 ml 1-Chlornaphthalin zu und läßt anschließend noch 30 min weiterreagieren. Nach dem Abkühlen wird abgesaugt und der Rückstand mehrfach mit Chloroform und Toluol gewaschen. Anschließend wird mit 1proz. HCl ausgekocht. Nach Abfiltrieren und Neutralwaschen mit Wasser wird mit Chloroform, Toluol und Aceton extrahiert. Der Feststoff wird i. Vak. bei 80°C getrocknet; Ausb. 2.40 g (55%). - MS (70 eV): m/z (%) = 668 (4) [M⁺].

C₃₆H₁₂FeN₁₂ (668.42) Ber. C 64.69 H 1.81 N 25.15 Gef. C 64.49 H 2.01 N 24.23

Chem. Ber. 122 (1989) 1665-1672

Allgemeine Arbeitsvorschrift zur Darstellung der Isocyanid-Komplexe 3a-8a: 100-200 mg (CN)₄PcFe (2) werden in einem Schlenk-Rohr nach Zusatz eines ca. 20fachen Überschusses an Ligand 5 d bei 60-80°C gerührt. Nach beendeter Umsetzung wird die Reaktionslösung (oder das feste Reaktionsgemisch) mit Methanol aufgenommen, abgesaugt und gut mit Methanol ausgewaschen. Zur weiteren Reinigung wird über Kieselgel mit Chloroform als Laufmittel chromatographiert. Die erhaltene Lösung wird eingeengt, das Produkt mit Petrolether (Siedebereich 30-50°C) gefällt, abgesaugt und i. Hochvak. bei 80°C getrocknet. Alle Verbindungen werden als luftstabile, mikrokristalline Pulver in Ausb. von 60-70% erhalten.

Bis(tert-butylisocyanid)[tetracyanophthalocyaninato]eisen(II) $[(CN)_4 PcFe(tBuNC)_2]$ (3a):

C46H30FeN14 (834.69) Ber. C 66.19 H 3.62 N 23.49 Gef. C 66.45 H 3.70 N 23.17

Bis(cyclohexylisocyanid)[tetracyanophthalocyaninato]eisen(II) $[(CN)_4PcFe(cHxNC)_2]$ (4a):

C₅₀H₃₄FeN₁₄ (886.76) Ber. C 67.72 H 3.86 N 22.11 Gef. C 67.07 H 4.03 N 21.86

Bis (2,6-dimethylphenylisocyanid) [tetracyanophthalocyaninato] $eisen(II) [(CN)_4 PcFe(Me_2PhNC)_2]$ (5a):

C54H30FeN14 (930.77) Ber. C 69.68 H 3.25 N 21.07 Gef. C 69.51 H 3.74 N 20.34

Bis(2-methylphenylisocyanid)[tetracyanophthalocyaninato]eisen-(II) $[(CN)_4 PcFe(o-MePhNC)_2]$ (6a):

C₅₂H₂₆FeN₁₄ (902.72) Ber. C 69.19 H 2.90 N 21.72 Gef. C 68.89 H 3.21 N 20.93

Bis(4-methylphenylisocyanid) [tetracyanophthalocyaninato]eisen-(II) $[(CN)_4PcFe(p-MePhNC)_2]$ (7a):

C₅₂H₂₆FeN₁₄ (902.72) Ber. C 69.19 H 2.90 N 21.72 Gef. C 69.01 H 3.07 N 21.14

Bis(2-isopropylphenylisocyanid)[tetracyanophthalocyaninato] $eisen(II) [(CN)_4 PcFe(iPrPhNC)_2]$ (8a):

C₅₆H₃₄FeN₁₄ (958.83) Ber. C 70.15 H 3.57 N 20.45 Gef. C 71.08 H 4.02 N 20.25

 μ -(1,4-Diisocyanobenzol)[tetracyanophthalocyaninato]eisen(II) (9a): 200.0 mg (0.30 mmol) (CN)₄PcFe (2) werden mit 41.5 mg (0.33 mmol) 1,4-Diisocyanobenzol in 30 ml Aceton 6 d zum Rückfluß erhitzt. Nach dem Abkühlen wird der Rückstand abfiltriert, mit Aceton extrahiert und i. Vak. bei 80°C getrocknet. Man erhält in fast quantitativer Ausbeute ein dunkelblaues Pulver.

C44H16FeN14 (796.55) Ber. C 66.35 H 2.02 N 24.62 Gef. C 65.89 H 2.42 N 21.96

CAS-Registry-Nummern

1: 10347-14-5 / 2: 121141-78-4 / 3a: 121125-69-7 / 4a: 121125-70-0 / 5a: 121125-71-1 / 6a: 121125-72-2 / 7a: 121125-73-3 / 8a: 121125-74-4 / 9a: 121125-76-6 / Fe(CO)₅: 13463-40-6 / [(CN)₄PcFe- $(dib)I_2]_n$: 121125-78-8 / 4-Aminophthalsäuredinitril: 56765-79-8 / Iod: 7553-56-2

¹⁾ ^{1a} M. Hanack, A. Datz, R. Fay, K. Fischer, U. Keppeler, J. Koch, J. Metz, M. Mezger, O. Schneider, H.-J. Schulze in Handbook of Conducting Polymers (T. Skotheim, Hrsg.), S. 133, Marcel Dek-ker, New York 1986. – ¹⁶⁾ M. Hanack, S. Deger, A. Lange, Coord. Chem. Rev. 83 (1988) 115. ^{2) 2a)} M. Hanack, W. Kobel, J. Metz, O. Schneider, H.-J. Schulze,

Mol. Cryst. Liq. Cryst. 96 (1983) 263. - 201 M. Hanack, Chimia 37 (1983) 238.

- ³⁾ M. Hanack, R. Behnisch, Inorg. Chem., im Druck.
- ⁽¹⁾ ⁽⁴⁾ Chem. Ber. 121 (1988) 1479.
- ⁵⁾ O. Schneider und M. Hanack, Chem. Ber. 116 (1983) 2088.
- ⁶⁾ Hoechst AG (J. Otten, Erf.), D.B.P. 2239799, 12. August 1972) [Chem. Abstr. 80 (1974) P133086f]
- ⁷⁾ E. G. Meloni, L. R. Ocone, B. P. Block, Inorg. Chem. 6 (1967) 424.
- ⁸⁾ A. B. P. Lever, J. P. Wilshire, *Inorg. Chem.* 17 (1978) 1145. ^{9) 9a)} O. Schneider, *Dissertation*, Universität Tübingen, 1983. ^{9b)} M. Hanack, R. Fay, Recl. Trav. Chim. Pays-Bas 105 (1986) 427.
- ¹⁰⁾ Y. B. Vysotsky, V. A. Kuzmitsky, K. N. Solovyov, *Theor. Chim. Acta* **59** (1981) 467.
- ¹¹⁾ J. E. Maskasky, J. R. Mooney, M. E. Kenney, J. Am. Chem. Soc.
- 94 (1972) 2132. ¹²⁾ ^{12a} A. R. Kane, *Ph. D. Thesis*, Case Western Reserve University, Cleveland 1969. ^{12b)} T. J. Marks, D. R. Stojakovic, *J. Am*. Chem. Soc. 100 (1978) 1695.
- ¹³⁾ L. Malatesta, F. Bonati, Isocyanide Complexes of Metals, J.
- Wiley and Sons, London 1969.
 ¹⁴⁾ ^{14a} J. D. Kuntz jr., P. v. R. Schleyer, A. Allerhand, J. Chem. Phys. 35 (1961) 1533. ^{14b} W. Z. Heldt, Inorg. Chem. 2 (1963) 1048.

- ¹⁵⁾ ^{15a)} M. M. Doeff, D. A. Sweigart, Inorg. Chem. 20 (1981) 1683. -
- ^{15b} E. Lorch, E. Breitmaier, *Chem. Ztg.* 99 (1975) 87.
 ^{16b} 16a) D. Knol, N. J. Koole, M. J. A. de Bie, *Org. Magn. Reson.* 8 (1976) 213. ^{16b} B. Crociani, R. L. Richards, *J. Organomet.* Chem. 144 (1978) 85.
- ¹⁷⁾ L. F. Farnell, E. W. Randall, E. Rosenberg, J. Chem. Soc. D,
- ¹⁸ R. W. Stephany, M. J. A. de Bie, W. Dreth, Org. Magn. Reson.
 ⁶ (1974) 45.
- ¹⁹⁾ W. P. Fehlhammer, Nachr. Chem. Tech. Lab. 30 (1982) 187
- ²⁰⁾ L. J. Boucher in Coordination Chemistry of Macrocyclic Compounds (G. A. Melson, Hrsg.), S. 461, Plenum Press, New York 1979.
- ²¹⁾ L. J. van der Pauw, Philips Techn. Rundschau 20 (1958) 230.
 ²²⁾ ^{22a)} M. Hanack, U. Keppeler, H.-J. Schulze, Synth. Met. 20 (1987) 347. ^{22b)} U. Keppeler, O. Schneider, W. Stöffler, M. Hanack, Tetrahedron Lett. 25 (1984) 3679.

- Tetrahedron Lett. 25 (1964) 5679.
 ²³⁾ M. Rein und M. Hanack, Chem. Ber. 121 (1988) 1601.
 ²⁴⁾ ^{24a} R. Obrecht, R. Herrmann, I. Ugi, Synthesis 1985, 400. –
 ^{24b} W. P. Weber, G. W. Gokel, Tetrahedron Lett. 1972, 1637.
 ²⁵ⁱ J. Griffiths, B. Roozplikar, J. Chem. Soc., Perkin. Trans. 1, 1976, 42. –
 ^{25b} R. Grosshans, Diplomarbeit, Universität Tübingen, 1987.

[69/89]